How to Draw a Sri Yantra

©1991 Patrick Flanagan

The word Yantra means 'Power Diagram' in Sanskrit. We have shown that shapes and diagrams can exert powerful effects on the subtle energy body. These effects have been measured by means of acupuncture and applied kinesiology.

The Sri Yantra or 'King of Power Diagrams' is over 12,000 years old. It is the most powerful and the most beautiful of all Yantras. It is said that meditation on the center of the Sri Yantra will bring about an understanding of the entire universe and will result in liberation.

Instructions for drawing the inner structure have to my knowledge never been published. I spent over 25 years in the study of this Yantra. After hundreds of hours of meditation and many thousands of attempts, I have by Grace been given the secret of this construction.

The inner core is made up of nine triangles made of 27 lines. Four triangles point up and five point down. The two outer triangles are constructed so that their points will touch a circle drawn from the center of the diagram. There are 18 'three line crossing' points that must cross exactly. Altering the geometry of any one triangle will throw the entire co-ordination off.
The first triangle is the most important. This triangle is by coincidence an exact cross section of the geometry of the Great Pyramid. If 1/2 its base is 1 unit, its height is equal to the square root of the Golden Section or PHI (Φ). The Golden Section is equal to 1/2 the square root of 5 plus 1/2 = 1.618033989. The sides of this triangle are equal to PHI. The square root of PHI is equal to 1.27201964961.

An 8*5*8 triangle can also be used. It has a base of 5 units and the two sides are equal to 8 units. This is related to the ancient 3*4*5 triangle. If 1/2 the base is 1, the sides are equal to 1.6 which is very close to PHI.

Find the center <C> of triangle <1> such that the radius <R> is equal distant from the three corners of the triangle.
Draw a circle with the radius $<r>$ from center $<C>$

Some of the mathematical relationships of the PHI (Φ) triangle are shown below:

$\Phi = 5^2 \cdot 5 = 1.618033989$

$k = 1/\Phi = 0.618033989$

$h_{\text{ft}} = \text{height of triangle} = \Phi^6 = 1.27202196915$

$\text{Base} = 2$

$\text{Center Point} = \text{center of triangle} = <c>$

$\text{Radius} = R = \Phi/2 \cdot Ht$

$\text{Distance from base to } <c> = (k^2/2) \cdot Ht = 0.242934136094$

$Ht = \Phi^6 = 1.272...$
Make triangle $<2>$. The base of $<2>$ is measured as a distance of $1/2 <\gamma>$ above the base of triangle $<1>$. The apex of triangle $<2>$ lies on the circle at a point exactly opposite to the apex of triangle $<1>$.

Alternative Lower Triangle is more exact

As a more exact alternative, the lower triangle is made a triangle with a 3-4-5 ratio. For the Yantra, a base width and base distance from $<\gamma>$ are calculated as shown. The distance from the center $<\gamma>$ to the base is $<\delta>$. The base width is equal to $<\delta>$.

Page: 4
The second triangle is based on the 3-4-5 triangle of the ancients. The basic ratios are shown below.
Make triangle <3>. The height is equal to 1/2 the base width of triangle <2>

1/2 Base Width of <2>

Make triangle <4>. Height is equal to 1/2 base width of triangle <1>

1/2 Base Width of <1>

Use points as shown to determine <x> level of inner structure.
Draw a line between the \(<X>\) points. The center of this line will be the Apex of triangle \(<\delta>\) and the Base line of triangle \(<\delta>\).

Draw triangle \(<\delta>\). Notice sides of \(<\delta>\) pass through circled points, and that base of \(<\delta>\) is centered at apex of triangle \(<3>\).
Triangle <5> sides cross triangle <1> at circled points. These points now mark the level of the Apex of triangle <6>. The base of <6> is the same level as the Apex of <5>. Draw triangle <6>.

Now draw triangle <7>. Starting at the center of the base of triangle <2>, observe the three line crossing points. The base of triangle <7> falls at the Apex level of triangle <4>.

Page: 8
The Base and Apex dotted lines are the basis for dimensioning of triangle \(<8\>). Notice circled points made by other triangles.

Draw triangle \(<8\>) as shown.
Now draw triangle \(\triangle 9 \). Notice circled base level crossing points of other triangles.

All that is needed now, is to complete triangles \(\triangle 3 \) and \(\triangle 4 \). See next diagram.
Complete <3> and <4>. See dotted lines. Note circled crossing points.

Sri Yantra inner core is now complete. The square and other additions are very easy and need no explanation. The yantra can be left open, or it can be filled in as shown in the next two drawings.